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tails of the resonance conditions are given in Brannen
and Froelich® and Froelich.? The magnetic guide field is
split into four sectors with a uniform field within the
sectors, and regions of a low magnetic field between the
sectors. To obtain stability of the betatron oscillations,
thus achieving focusing of the beam, magnetic shields
have been installed in two regions between the sectors,
reducing the magnetic field in these regions. The mag-
netic gap within the sectors has a width of only 7 mm.
The energy gain per orbit can be varied within wide
limits (0.40-1.5 Mev) and synchronism obtained by ad-
justing the distance between the symmetrical half of the
magnetic guide field. The lower limit of the range is de-
termined by the width of the cavity and gun assembly,
the upper limit by the power available and RF break-
down in the cavity. With the present arrangement this
gives a lower limit of 780 kev per orbit. We have oper-
ated as low as 400 kev with the gun removed and field
emission from the walls of a re-entrant cavity supplying
the current. The upper limit could be as much as 1.5
Mev per orbit if power is supplied by two magnetrons.
At the present time one magnetron (RK 5586) is used
supplying 600 kw peak power (pulse duration 2 usec).
For electron injection, a simple Pierce gun is used giving
a current of 300 ma at 20 kev. The electrons are injected
into the cavity by means of small auxiliary pole pieces.

The highest currents obtained to date are 20 ma in

¢ E. Brannen and H. Froelich, “Preliminary operation of a four-
sector racetrack microtron,” J. Appl. Phys., vol. 32, pp. 1179-1180;
June, 1961.
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the third orbit and 2.5 ma in the final (eighth) orbit with
an energy of 6.2 Mev in the eighth orbit. The high cur-
rent dropoff from third to eighth orbit is due to the {act,
that, because of beam loading, the accelerator does not
operate in perfect synchronism. With an RF source giv-
ing slightly more power than the presently used mag-
netron, the current in the final orbit should exceed 10
ma. This assumption is substantiated by the fact that
at lower currents (<1ma) the current drops off from
third to eighth orbit only by a factor of 1.5. The bunch-
ing behavior of the racetrack microtron is theoretically
similar to that of a conventional microtren, i.e., with an
optimum bunching to be expected in the third orbit. In
an actual submillimeter wave generator a three-orbit
machine might therefore be used, giving a fairly com-
pact design, and such a device is being designed on
the basis of the present machine. As far as the extrac-
tion of electromagnetic radiation from a bunched beam
is concerned, we have not been able to use the beam of
the racetrack microtron for that purpose in time for this
conference. So far we have been using Cerenkov and
transition radiators to extract radiation from an elec-
tron beam accelerated by a simple cavity. We plan to
continue this series of experiments in the near future
using the beam of the racetrack microtron.
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The Groove Guide, a Low-Loss Waveguide

for Millimeter Waves*

F. J. TISCHERY, FELLOW, IEEE

Summary—A new waveguide for the low-loss transmission of
millimeter waves is presented. The guide consists of two parallel
conducting walls with grooves in the central region of the guide cross
section. The grooves run along the guide in the direction of the wave
propagation. It is shown that the waveguide, if excited in the TE-
wave mode, has properties similar to those of the H guide, which
contains a dielectric slab between the conducting walls in the center.
The new guide is characterized by an exponential transverse decrease
of the field distributions in direction from the center and by low
attenuation. Theoretical considerations dealing with the field dis-
tribution and the data of the guide are presented.

* Received January 21, 1963; revised manuscript received April
8, 1963.
t Research Institute, University of Alabama, Huntsville. Ala.

INTRODUCTION

T CAN BE SHOWN that a waveguide which con-
I[ sists of two parallel conducting walls has low at-

tenuation if excited by TE waves. For this wave
mode, the electric-field vector is parallel to the conduct-
ing walls. The attenuation has characteristics similar to
those of the circular waveguide excited by TEy waves;
namely, it is low and decreases with increasing fre-
quency.

The H-guide, which consists of two parallel conduct-
ing walls and a centrally located transverse dielectric
slab running along the guide in the direction of the wave
propagation, has similar low-loss properties [1, 2]. In
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this guide, the direction of the field vectors and the field
distributions, in the region of maximum energy trans-
port, are equal to those in the parallel-wall guide. The
main difference consists in an exponential decrease of
the field intensities in the H-guide in direction from the
center parallel to the walls caused by the centrally
located dielectric slab. The dielectric losses yield a
major contribution to the attenuation of this guide.

In a new waveguide, which basically also consists of
two conducting walls facing each other, grooves in
these walls located in the central region of the guide
cross section and running along the guide have a
similar effect as the dielectric slab in the H-guide. The
grooves cause the field distribution to decrease ex-
ponentially from the center. Since no dielectrics are
used in this guide, the dielectric losses are eliminated
with a corresponding reduction of the attenuation. A
basic theoretical consideration of this new waveguide
structure is the topic of this paper.

A method of applying conformal mapping in a general
theory of the groove guide, as the new waveguide
may be called, is presented first. The application of
this method to a rectangular cross section of the
groove is considered next. Finally, a procedure for ob-
taining approximate values of the cutoff and guided
wavelengths in the groove guide is shown.

DerorMED-WALL GUIDE

Let us first consider generally the effect of deforma-
tions of the wall surfaces facing each other in a parallel-
wall waveguide, as indicated in Fig. 1(a). The de-
formations have the form of grooves. In these con-
siderations, we assume orthogonal cylindrical coordi-
nates. The longitudinal coordinate points in the direc-
tion of wave propagation. The transverse coordinates
are chosen such that the walls represent surfaces of
constant magnitudes of one of the cross-sectional co-
ordinates. We compare the field intensities for degen-

AN
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(a) ()

Fig. 1—Parallel-wall waveguide. (a) Deformed-wall guide. (b) Par-
allel-wall guide with nonuniform and anisotropic medium.
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erate TE waves in this guide which is air-filled with
those in a true parallel-wall guide as shown in Fig. 1(b).
The medium between the conducting walls of this latter
guide is anisotropic and nonuniform over the cross
section.

We write Maxwell's equations:

VX E = — jwuH, ey
V X H = jweE, (2)
V-D =0, 3)
V.-B =0, (4)
where
B = uH = pou.H, (3)
D = ¢E = ¢¢,E. (6)

Developing Maxwell’s equations for the deformed-wall
air-filled guide in the coordinate system for which a
length element is given by

ds? = dx? + (hdv)? + (hdw)? )
yields the following equation system:
3(hH, a(hH,
( ) — ( ) = jweh?Ey, (8)
0v ow
oH, o(hH,) . LB )
9w o o
a(hH,) oH, . LE (10)
dx v — Jee S,
I(hE, d(hE,
(W) 30U _ —jopih®Ha, (11)
adv Jdw
dE, d(hE,) T 1
ow 9% = JWiko vy ( )
d(hE,) OFE, ]
- = _]wﬂOhHwy (13)
dx dv
0E, 9(hE,)  9d(hEy)
-+ + =0, (14)
ox dv Jdw
dH, a(kd,) o(hH,)
e + =0 (15)
dx dv Jw

The corresponding equation system for the dielectric-
filled parallel-wall guide is:

oH, oH,
— = jwe Ly, (16)
dy 92
0H, dH, .
9z - E = JweyyFy, an
om, oH,
— = jwes, F,, (18)

ox dy
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oFE, oE,
- = — jQszHz, (19)
Oy dz
dE,  OE, - 20
- = — Jwu
Py P JWhyylly,
9E, 0L, - o
- = T JWeptd
dx dy JoH
GH, d H d zsz
. + (l‘w 1/) + (s ) _ (22)
ox dy 9z
oL, a E (e, E,
€ + (ew 1/) + ) -0 (23)
Ox dy dz

where €, po,n=0for n, m=x, v, z and n=m.

Comparison of these two equation systems shows in-
teresting relationships. If we introduce the following
identities, we can transform one system into the other
one. The identities are

Ha: = Hz, Ea: = Er,
hH, = H,, hE, = E,,
hH, = H,, hE, = E,,

ﬂzz(y, Z) = “thi éu(% Z) = €0h2)

byy(y,2) = Ko, e(¥,2) = e,

b (Y, 2) = uo, (9, 2) = €. (24)

The relationships show that the parallel-wall guide ac-
cording to Fig. 1(b) filled with an anisotropic and trans-
versely nonuniform medium is equivalent to the de-
formed-wall guide according to Fig. 1(a). Knowing the
field distributions and properties of the former, we can
compute the data of the latter structure by the use of
the relationships described by (24).

We note that the properties of the medium in the
parallel-wall guide are described by a tensor permeabil-
ity [uf and a tensor permittivity [e[ given by

By, 2o 0 O
|l = 0 mo O (25)
0 0 wo
and
By, 2)e 0 0
=] 0 ao0 (26)
0 0 e

The equations show that the longitudinal components
(with respect to the guide) of the relative material
constants u, and €, are proportional to A2 which is a func-
tion of the cross-sectional position. The relative mate-
rial constants u, and €, are given by p=pu, and € =¢ce,,
respectively.

Let us next represent the cross-sectional coordinates
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for the two guides shown in Fig. 1 in complex planes
[4, 5] where

U = v+ ju, @)
and
X =9+ (28)
The coordinates are interrelated by a complex function
U = f(X). (29)

We postulate that U is a conformal image of X. We
write

dU/dX = A exp ja. (30)
Using these notations, » becomes
h=4=|dU/dx]. (31)

The longitudinal relative permittivity and permeabil-
ity are hence equal to the scale factor (31) of the con-
formal transformations of the coordinates of the two
systems.

A MeTHOD FOR CONSIDERING THE GROOVE GUIDE

The derived relationships indicate the possibility of
computing the field distributions and properties of the
guide with arbitrarily deformed walls as shown in Fig.
1(a) by considering a parallel-wall guide filled with an
anisotropic and nonuniform medium as an intermediate
step. The relationships suggest the following procedure.

First, we present the cross section of the deformed-
wall guide in the complex plane and determine the
complex function [4, 5] which transforms the cross
section into two straight parallel lines. If the trans-
formation function is analvtic, the Cauchy-Riemann
equations are satisfied, and the transformation rep-
resents a conformal mapping. The scale factor k(v, z) of
the conformal mapping vields the lorgitudinal com-
ponents of the anisotropic relative permittivity and
permeability [(25) and (26)] of the medium which fills
the hypothetical parallel-wall guide to give equal
properties. We compute next the field distribution
within and the properties of the parallel-wall guide.
The basic properties, such as the exponential decrease
of the field intensities in direction from the center, the
cutoff wavelength A, the guide wavelength \,, etc., are
independent of the transformation and the same for
both guides. The magnitudes of the field intensities are
interrelated by (24).

For the determination of the scale factor Z(v, g) and
of the complex transformation function f(XX), mathe-
matical procedures shown in the following section are
suitable. This section shows the application of the
Schwartz-Christoffel theorem [4, 5] for the rigorous
computation of the transformation function. Graphical
methods and experimental electrolytic-tank procedures
for field mapping can be applied also; they yield di-
rectly the scale factor # without the necessity of de-
termining the transformation function [6].
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RECTANGULAR CRross SECTION OF THE GROOVE

The guide with a rectangular cross section of the
groove represents a typical, practical example of the
new guide, This particular cross section is interesting
since the transformation function and the scale factor
can be determined rigorously by conformal mapping.
The cross section of the guide has the form and the
dimensions shown in Fig. 2. The total height of the
guide is %, and the distance between the parallel walls
is p. The width and depth of the rectangular grooves
are Ak and Ap, respectively. The cross section as shown
in Fig. 2, plotted in the complex plane, can be trans-
formed by a complex function into two straight parallel
lines. The Schwartz-Christoffel theorem is applied for
finding this function [4, 5].

Since the cross section of the guide is symmetrical, we
consider one quadrant only and place it on the com-
plex U plane with v and w as coordinates. The condi-
tions are indicated in Fig. 3(a). The contour of the
quadrant of the guide with infinite walls follows the
lines from 0 to 4, B, C, D, E, and back to 0. The point
D is at infinity. This contour has to be transformed into
a rectangle, as shown in Fig. 3(c). The transformed
cross section is plotted in the complex X plane where
X=y+jz

For simplifying the transformation procedure, a
complex 7 plane is introduced as an intermediate step
[Fig. 3(b)]. The coordinates are r and s; the complex
function becomes T =r-js. This assumption allows
mapping the complex T plane onto the U and X planes.
Elimination of 7" yields the transformation function
between U and X. In the 7 plane, the contour represent-
ing the considered quadrant of the guide is found on the
real axis with the images of the points 0 and 4 to E
denoted by the same letters. The connecting line be-
tween the points D in the T plane is a circle with in-
finite radius.

Using the Schwartz-Christoffel theorem, we find for
the transformations the following relations:

dU/AT = Ki(T — r)V3 (T2 — 1)"V2(T —r)~12, (32)
dX/dT = Ko(T + 1)7V¥T — 1)~1/2 (33)
dU/dX = (T — ro) YT — )12, (34)

Evaluation of (33) yields
T = — cos QuX/p+=/2). (35)

Substitution in (34) and integration gives the trans-

formation function from
dU/dX = (sin2xX/p + ro)V2(sin 22X /p + r1)722. (36)

The scale factor is obtained from (34). It becomes,
after separating X in real and imaginary parts,

e = l:(cos & cosh ¢ -+ 75)? + (sin ¢ sinh ¢)273 .
= (cos ¢ cosh ¢ + r;)2 4 (sin ¢ sinh ¢)2j|7 (

where ¢ =2my/p+7/2 and ¥ =27wz/p.
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Fig. 2—Cross section of the rectangular-groove guide.

Usvtjw Ter+js X=y+jz
(D D ) (40 4o
pl2 s pl2

¢
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EF0 A 1 +1 r EOA vy
A
(2) (b) ()

Fig. 3—Quadrant of guide cross section before and after transforma-
tion in the complex plane. (a) Original cross section. (b) and (c)
Cross sections after transformation.

The determination of the constants #; and #; is rather
tedious and is omitted here. It should be noted that the
computation leads to elliptical integrals for which
tables can be found in Byrd and Friedman [7]. A plot
of the constants #, and 7, versus Ap/p and Ak/p is
shown in Fig. 4. With the constants known, we can
find %4? and consequently the components of the relative
permittivity and permeability according to (25) and
(26). Fig. 5 shows an example of a typical distribution
of these material constants in the yz-plane where the
density of shading represents a measure of their magni-
tude.

We observe that the medium constants are increased
in the central region of the cross section above the
free space value which is 1. The increase becomes con-
siderable near the images of the points 4 and B, which
denote the bottom of the groove. A decrease of the con-
stants occurs near the image of the corner point € which
is located at the rim of the rectangular groove [Fig.
3@)].

The next step in considering the groove guide con-
sists in the computation of the field distribution within
the guide with the cross section shown in Fig. 1(b) filled
with a medium with medium constants given by 42 with
a distribution as indicated in Fig. 5. Methods for the
computation of electromagnetic fields in nonumiform
media can be used for this purpose. Procedures are de-
scribed in the literature (Schelkunoff [4], Collin [9] and
Tischer [8]. A special treatment of this problem is in
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Fig. 4—Constants 7, and #; (38) vs relative groove width
ARl/p and depth Ap/p.
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Fig. 5—Typical distribution of the relative permittivity and perme-
ability [(25) and (26)] of the medium in the parallel-wall guide,

preparation. Knowing the field distribution, we can
compute the general data of a parallel-wall guide and
apply the results to the groove guide.

An alternative, simplified method for estimates of the
cutoff and guide wavelengths applying the results of
computations of the data of the H-guide is shown in the
next section.

A RoucH EsSTIMATE OF THE CUTOFF AND
Guipe WAVELENGTHS

We can obtain a rough estimate of the cutoff and
guide wavelengths of the rectangular groove guide
without carrying out the computation of the field
distribution by using the results of the following approxi-
mate consideration, We substitute for the central sec-
tion of the ajr-filled guide which includes the two
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Fig. 6—Replacement of the central guide section
by a dielectric-filled section.

rectangular grooves a dielectric-filled section of a
width equal to that of the rest of the guide. The rela-
tive permittivity of the substituted section is chosen
uniform and has such a value that the cutoff and guide
wavelengths equal those of the air-filled section which
includes the grooves. Fig. 6 shows, on the right-hand
side, the substituted section filled with the uniform and
isotropic dielectric.

For finding the relative permittivity of the dielectric,
we have to equate the cutoff wavelengths of both guide
sections between 4 and A4’ as indicated in Fig. 6. We
find

At = [2(p + Ap)]? = «(2p), (38)
which yields
& = (1+ Ap/p)%
and
e = 1 24p/p, (39)

if Ap is a fraction of the width p(Ap<«<p). Knowing the
permittivity of the dielectric slab, we use relations de-
rived for the cutoff and guide wavelengths of the H-
guide for the determination of these quantities of the
groove guide. The relations involved are {1, 2]

kot + ka = (e, — 1)(2w/N0)?, {40)
tan (deh/Z) = érka/kd, (41)
k= (2m/Ng)* — (2m/No)* + (n/p)?,  (42)

where &, and kg, are constants, A is the same free-space
wavelength corresponding to the frequency of the
transmitted signals, and A, is the wavelength within the
guide. The cutoff wavelength A, is given by

(I/Ae)? = (1/he)* — (1/N)%.

Evaluation of (40) to (43), usually performed graph-
ically, yields A, and A, which is the same for both guides.
It should be noted that the constant kg represents the
constant for the exponential decrease of the feld
intensities in direction parallel to the walls and in direc-

(43)



296

tion from the centrally-located dielectric slab. The
value of k4 is approximately the same in the case of the
groove guide.

CONCLUSION

It is shown that a deformed-wall guide with grooves
in the central region of the cross section is equivalent to
a parallel-wall guide with a dielectric contained in the
central section. The guide has, consequently, similar
properties to those of an H-guide. Theoretically, it is
characterized by low attenuation which decreases with
increasing frequency and by an exponentially decreasing
field distribution in the direction from the center of the
cross section parallel to the walls. Since the guide con-
tains no dielectric, it is expected to have a lower attenua-
tion than the H-guide. Besides the application for long-
distance transmission and as a delay line, the simple
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structure makes the guide suitable for the design of
millimeter wave circuitry and of circuit elements,
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Factors Affecting Earth-Satellite Millimeter
Wavelength Communications*

A. W. STRAITONY, reELLow, 1IEEE, AND C. W. TOLBERTY, SENIOR MEMBER, IEEE

Summary—The use of millimeter wavelengths for earth-satellite
transmissions is suggested by the large bandwidths and high gain
with small antennas possible at these wavelengths. The factors dis-
cussed are 1) propagation path loss, 2) refraction, and 3) antenna
temperature.

The attenuation through the entire atmosphere over the milli-
meter spectrum is given as a function of elevation angle of the an-
tenna beam. The attenuation and scattering loss due to water and ice
particles varies over a wide range of values depending on the number
of particles and their sizes.

Refraction by the atmosphere is less than one milliradian for
elevation angles for which the absorption is low enough to make the
transmission practical. Fluctuations due to refraction may, however,
be quite severe.

Contribution to antenna temperatures from the atmosphere, the
earth, the sun and moon are given for earth-based antennas and
antennas in space.

INTRODUCTION

[\ ARTH-SATELLITE millimeter wavelength ap-
I plications, as the name implies, involve trans-

At mission through the earth’s atmosphere. It is the
purpose of this paper to discuss several of the important
factors which determine the propagation characteristics
of wavelengths from 1 mm to 1 ¢m and to present the
results of recent measurements which provide further
quantitative evaluations of these factors.

* Received January 21, 1963; revised manuscript received June
3, 1963. The data presented in this paper was obtained under Air
Force Contracts No. 19(604)-8036 and No. AF 33(657)-7333.

1 Electrical Engineering Research Laboratory, The University
of Texas, Austin, Tex,

This paper will be concerned with 1) propagation
path loss, 2) refraction, and 3) antenna temperature.
These factors are pertinent to both active and passive
systems, and form the framework for the choice or rejec-
tion of a millimeter wavelength for a particular applica-
tion.

ProracaTioN PaT Losses

The losses experienced in propagating millimeter
wavelengths through the earth’s atmosphere, other than
free-space losses, are caused predominantly by atmos-
pheric gases, clouds, particles and precipitation. Longer
wavelengths are attenuated by the same mechanisms but
to a lesser degree because of the remoteness of the wave-
lengths from the resonant {requency of the gas and the
smaller size of precipitation and cloud particles relative
to the longer wavelengths.

The attenuation by atmospheric gases is primarily
associated with oxygen and water vapor molecules and
is most conveniently described by the Van Vleck-
Weisskopf equation.! Due to the magnetic moments
associated with oxygen and the electric moments asso-
ciated with water vapor, there are a large number of en-
ergy transitions that produce peak values of absorption
at millimeter wavelengths. Most of the energy transi-

! J. H. Van Vleck and V. F, Weisskopf, “On the shape of collision
}fgzzgdened lines,” Rev. Mod. Phys., vol. 17, pp. 227-236; April-July,



