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tails of the resonance conditions are given in Brannen

and FroelichG and Froelich.3 The magnetic guide field is

split into four sectors with a uniform field within the

sectors, and regions of a low magnetic field between the

sectors. To obtain stability of the betatron oscillations,

thus achieving focusing of the beam, magnetic shields

have been installed in two regions between the sectors,

reducing the magnetic field in these regions. The mag-

netic gap within the sectors has a width of only 7 mm.

The energy gain per orbit can be varied within wide

limits (0.40–1.5 hlev) and synchronism obtained by ad-

justing the distance between the symmetrical half of the

magnetic guide field. The lower limit of the range is de-

termined by the width of the cavity and gun assembly,

the upper limit by the power available and RF break-

down in the cavity. With the present arrangement this

gives a lower limit of 780 kev per orbit. Tire have oper-

ated as low as 400 kev with the gun removed and field

emission from the walls of a re-entrant cavity supplying

the current. The upper limit could be as much as 1,5

hIev per orbit if power is supplied by two magnetrons.

At the present time one magnetron (RK 5586) is used

supplying 600 kw peak power (pulse duration 2 psec).

For electron injection, a simple Pierce gun is used giving

a current of 300 ma at 20 kev. The electrons are injected

into the cavity by means of small auxiliary pole pieces.

The highest currents obtained to date are 20 ma in

d E. Brannen and H. Froelich, “Preliminary operation of a four-
sector racetrack microtron, ” 1. AppZ. Phys., vol. 32, pp. 1179-1180;
June, 1961.

the third orbit and 2.5 ma in the final (eighth) orbit with

an energy of 6.2 Mev in the eighth orbit. The high cur-

rent dropoff from third to eighth orbit is clue to the iact,

that, because of beam loading, the accelerator does not

operate in perfect synchronism, With an RF source giv-

ing slightly more power than the presently usedl mag-

netron, the current in the final orbit should exceed 10

ma. This assumption is substantiated by the fact that

at lower currents ( < lma) the current drops OR from

third to eighth orbit only by a factor of 1,5. The bunch-

ing behavior of the racetrack microtron is theoretically

similar to that of a conventional microtrcln, i.e., with an

optimum bunching to be expected in the third orbit. In

an actual submillimeter wave generator a three-orbit

machine might therefore be used, giving a fairly com-

pact design, and such a device is being designed on

the basis of the present machine. As far as the extrac-

tion of electromagnetic radiation from a bunched beam

is concerned, we have not been able to use the beam of

the racetrack microtron for that purpose in time for this

conference. So far we have been using Cerenkov and

transition radiators to extract radiation from an elec-

tron beam accelerated by a simple cavity-. We plan to

continue this series of experiments in the near future

using the beam of the racetrack microtron.
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The Groove Guide, a LOW-LOSS Waveguide

for Millimeter Waves*

F. J, TISCHER~,

Summary—A new waveguide for the low-loss transmission of
millimeter waves is presented. The guide consists of two parallel

conducting walls with grooves in the central region of the guide cross

section. The grooves run along the guide in the direction of the wave
propagation. It is shown that the waveguide, if excited in the TE-
wave mode, has properties similar to those of the H guide, which
contains a dielectric slab between the conducting walls in the center.
The new guide is characterized by an exponential transverse decrease
of the field distributions in direction fro~m the center and by low
attenuation. Theoretical considerations clealing with the field dis-

tribution and the data of the guide are presented.
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INTRODUCTION

~ T CAN BE SHOWN that a waveguide which con-

-1sists of two parallel conducting walls has low at-

tenuation if excited by TE waves. For this wave

mode, the electric-field vector is parallel to the conduct-

ing walls. The attenuation has characteristics similar to

those of the circular waveguide excited by TEO1 waves;

namely, it is low and decreases with increasing fre-

quency.

The H-guide, which consists of two parallel conduct-

ing walls and a centrally located transverse dielectric

slab running along the guide in the direction of the wave

propagation, has similar low-loss properties [1, 2]. In
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this guide, the direction of the field vectors and the field

distributions, in the region of maximum energy trans-

port, are equal to those in the parallel-wall guide. The

main difference consists in an exponential decrease of

the field intensities in the H-guide in direction from the

center parallel to the walls caused by the centrally

located dielectric slab. The dielectric losses yield a

major contribution to the attenuation of this guide.

In a new waveguide, which basically also consists of

two conducting walls facing each other, grooves in

these walls located in the central region of the guide

cross section and running along the guide have a

similar effect as the dielectric slab in the H-guide. The

grooves cause the field distribution to decrease ex-

ponentially from the center. Since no dielectrics are

used in this guide, the dielectric losses are eliminated

with a corresponding reduction of the attenuation. A

basic theoretical consideration of this new waveguide

structure is the topic of this paper.

A method of applying conformal mapping in a general

theory of the groove guide, as the new waveguide

may be called, is presented first. The application of

this method to a rectangular cross section of the

groove is considered next. Finally, a procedure for ob-

taining approximate values of the cutoff and guided

wavelengths in the groove guide is shown.

DEFORMED-WALL GUIDE

Let us first consider generally the effect of deforma-

tions of the wall surfaces facing each other in a parallel-

wall waveguide, as indicated in Fig. 1 (a). The de-

formations have the form of grooves. In these con-

siderations, we assume orthogonal cylindrical coordi-

nates. The longitudinal coordinate points in the direc-

tion of wave propagation. The transverse coordinates

are chosen such that the walls represent surfaces of

constant magnitudes of one of the cross-sectional co-

ordinates. We compare the field intensities for degen-

Fig.
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(a) (b)

I—Parallel-wall waveguide. (a) Deformed-wall guide. (b) Par-
allel-wall guide with nonuniform and anisotropic medium.

crate TE waves in this guide which is air-filled with

those in a true parallel-wall guide as shown in Fig. 1(b).

The medium between the conducting walls of this latter

guide is anisotropic and nonuniform over the cross

section.

We write Maxwell’s equations:

VX E= –juPH, (1)

V X Zl = jueE, (2)

V. D=O, (3)

V. B=O, (4)

where

B = pH = /-top,H, (5)

D = eE = eoerE. (6)

Developing Maxwell’s equations for the deformed-wall

air-filled guide in the coordinate system for which a

length element is given by

ds2 = dxz + (lzdv)2 + (k&v)2

yields the following equation system:

t) (hHJ d(hHJ
— — — = jueoh2Ez,

& dw

aHz 8(hHJ
— — — =jueohEV,

C7w ax

d(hHJ 13Hz
— —— = jweohE.,

ax an

d (hEw) a(lzEJ
— — — = —jwpoh2Hz,

8v dw

aE. a(lLEw)
— – —————= –j~pohH,,
aw 8X

d(hEJ 13EZ
— — ———= — jquohH~,

8% c%

a(hEJ
h’:+-

d(hEJ
+———— = o,

l% dw

d (hHo) 13(hHJ
h’~z+— +— = o.

dx dv dw

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

The corresponding equation system for the dielectric-

filled parallel-wall guide is:

(16)

(17)

(18)
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(19)

(20)

(21)

dE= N~.uZJ a (e..E=)
&z —+

8X
+–~=o (23)

ay

where c, pa,~=O for n, m=x, y, z and n#m.

Comparison of these two equation systems shows in-

teresting relationships. If we introduce the following

identities, we can transform one system into the other

one. The identities are

lzH. = HZ, h13. = E,,

MU(Y,z) = ~ohz, %(Y, z) = @~2,

/4/l/(Y, z) = !JO, (~uuY> z) = %

/Jzz(Y, 4 = MO, %2(Y,z) = ~o. (24)

The relationships show that the parallel-wall guide ac-

cording to Fig. 1 (b) filled with an anisotropic and trans-

versely nonuniform medium is equivalent to the de-

formed-wall guide according to Fig. 1 (a). Knowing the

field distributions and properties of the former, we can

compute the data of the latter structure by the use of

the relationships described by (24).

We note that the properties of the medium in the

parallel-wall guide are described by a tensor permeabil-

ity I WI and a tensor permittivity I et given by

It’(y, z)/.Lo o 0

[Pl = o )./,0o (25)

o 0 po

and

‘I’he equations show that the longitudi ual components

(with respect to the guide) of the relative material

constants p, and ~, are proportional to h2 which is a func-

tion of the cross-sectional position. The relative mate-
. .

rial constants pr and C? are given by p =POP, and e = eoe~,

respectively.

Let us next represent the cross-sectional coordinates

for the two guides shown in Fig. 1 in complex planes

[4, 5] where

U = v+jzv, (27)

and

X = y+jz. (28)

The coordinates are interrelated by a complex function

u = j(x). (29)

We postulate that U is a con formal image of X. We

write

d U/d.Y = A exp ja. (30)

Using these notations, lZbecomes

h = .4 = [ dU/d.Y[ , (31)

The longitudinal relative permit tivity and per meabil -

ity are hence equal to the scale factor (31) of the con-

formal transformations of the coordinates of the two

systems.

A NfETIIOD FOR CONSIDERING THE GROOVE GUIDE

The derived relationships indicate the possibility of

computing the field distributions and properties of the

guide with arbitrarily deformed walls as shown in Fig.

1(a) by considering a parallel-wall guide filled with an

anisotropic and nonuniform medium as an intermediate

step. The relationships suggest the following procedure.

First, we present the cross section O( the deformed-

wall guide in the complex plane and determine the

complex function [4, 5 ] which transforms the cross

section into two straight parallel lines. [f the trans-

formation function is analytic, the Cauchy-Rienlann

equations are satisfied, and the transformation rep-

resents a conformal mappifig. The scale factor h(y, z) of

the conformal mapping yields the longitudinal conl-

poneuts of the anisotropic relative permittivit? and

permeability [(25) and (26)] of the medium which fills

the h}-pathetical parallel-wall guide to give equal

properties. TA7e compute next the field distribution

within and the properties of the parallel-wall guide.

The basic properties, such as the exponential c~ecrease

of the field intensities in direction from the center, the

cutoff wavelength h~, the guide wavelength h,,, etc., are

independent of the transformation and the same for

both guides. The magnitudes of the field intensities are

interrelated by (24).

For the determination of the scale factor h (y, z) and

of the complex transformation function ~(.Y), mathe-

matical procedures shown in the following section are

suitable. This section shows the application of the

Schwartz- Christoffel theorem [4, .S] for the rigorous

computation of the transformation function. Graphical

methods and experimental electrolytic- tank procedures

for field mapping can be applied also; they yield di-

rectly the scale factor h without the necessity of de-

termining the transformation function [6].
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RECTANGULAR CROSS SECTION OF THE GROOVE

The guide with a rectangular cross section of the

groove represents a typical, practical example of the

new guide. This particular cross section is interesting

since the transformation function and the scale factor

can be determined rigorously by conformal mapping.

The cross section of the guide has the form and the

dimensions shown in Fig. 2. The total height of the

guide is k, and the distance between the parallel walls

k P. The width and depth of the rectangular grooves

are Ah and Ap, respectively. The cross section as shown

in Fig. 2, plotted in the complex plane, can be trans-

formed by a complex function into two straight parallel

lines. The Schwartz-Christoffel theorem is applied for

finding this function [4, .S].

Since the cross section of the guide is symmetrical, we

consider one quadrant only and place it on the com-

plex U plane with v and w as coordinates. The condi-

tions are indicated in Fig. 3(a). The contour of the

quadrant of the guide with infinite walls follows the

lines from O to A, 13, C, D, E, and back to O. The point

D is at infinity. This contour has to be transformed into

a rectangle, as shown in Fig. 3(c). The transformed

cross section is plotted in the complex X plane where

x= y+jz.

For simplifying the transformation procedure, a

complex T plane is introduced as an intermediate step

[Fig. 3(b) ]. The coordinates are r and s; the complex

function becomes T= r +js. This assumption allows

mapping the complex T plane onto the U and X planes.

Elimination of T yields the transformation function

between U and X. In the T plane, the contour represent-

ing the considered quadrant of the guide is found on the

real axis with the images of the points O and A to E

denoted by the same letters. The connecting line be-

tween the points D in the T plane is a circle with in-

finite radius.

Using the Schwartz- Christoffel theorem, we find for

the transformations the following relations:

dU/dT = ICI(T – rJ112(T2 – 1)–1/2(T – ~1)–112, (32)

dX/dT = K2(T + 1)–1/2(T – 1)–’/2, (33)

dU/dX = (T – YJ’12(T – Y,)-’/z. (34)

Evaluation of (33) yields

T = – COS(27rX/P+7r/2). (35)

Substitution in (34) and integration gives the trans-

formation function from

dU/dX = (sin 2~.X/fi + rz) l/2(sin 2TX/p + rl)-112. (36)

The scale factor is obtained from (34). It becomes,

after separating X in real and imaginary parts,

~, = (COS o cosh ~ + YJ2 + (sin r#Jsinh +)2 ~

“[ 1(COS @ cosh # + VI)’ + (sin@ sinh *)2 ‘
(37)

where ~ = 27ry/@+~/2 and * = 27rz/p.

I

September

I
Fig. 2—Cross section of the rectangular-groove guide.

U=v+jw T= r,js X=Y.jz

I
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Fig. 3—Quadrant of guide cross section before and after transforma-
tion in the complex plane. (a) Original cross section. (b) and (c)
Cross sections after transformation.

The determination of the constants YZand rl is rather

tedious and is omitted here. It should be noted that the

computation leads to elliptical integrals for which

tables can be found in Byrd and Friedman [7]. A plot

of the constants rz and rl versus Ap/p and Ah/p is

shown in Fig. 4. with the constants known, we can

find 1J2and consequently the components of the relative

permittivity and permeability according to (25) and

(26). Fig. 5 shows an example of a typical distribution

of these material constants in the yz-plane where the

density of shading represents a measure of their magni-

tude.

we observe that the medium constants are increased

in the central region of the cross section above the

free space value which is 1. The increase becomes con-

siderable near the images of the points A and B, which

denote the bottom of the groove. A decrease of the con-

stants occurs near the image of the corner point C which

is located at the rim of the rectangular groove [Fig.

3(a)].

The next step in considering the groove guide con-

sists in the computation of the field distribution within

the guide with the cross section shown in Fig. 1 (b) filled

with a medium with medium constants given by h~ with

a distribution as indicated in Fig. 5. Methods for the

computation of electromagnetic fields in nonuniform

media can be used for this purpose. Procedures are de-

scribed in the literature (Schelkunofi [4], Collin [9] and

Tischer [8]. A special treatment of this problem is in
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Fig. 4—Constants rz and r, (38) vs relative groove width
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Fig. S—Typical distribution of the ~elat~ve ]permittivity and perme-
ability [(25 ) and (26)] of the medmm m the parallel-wall guide.

preparation. Knowing the field distribution, we can

compute the general data of a parallel-wall guide and

apply the results to the groove guide.

An alternative, simplified method for estimates of the

cutoff and guide wavelengths appllying the results of

computations of the data of the H-guide is shown in the

next section.

A ROUGH ESTIMATE OF THE CUTOFF AND

GUIDE WAVE1.l?NG’rHS

We can obtain a rough estimate of the cutoff and

guide wavelengths of the rectangular groove guide

without carrying out the computation of the field

distribution by using the results of the following approxi-

mate consideration, We substitute for the central sec-

tion of the air-filled guide which inclucles the two

&j ——-.
T Ah—

. ——

I

—,

.—
—.

.-

—-

Fig. 6—Replacement of the central guide section
by a dielectric-filled section.

rectangular grooves a dielectric-filled section of a

width equal to that of the rest of the guide. The rela-

tive permittivity of the substituted sectilon is chosen

uniform and has such a value that the cutoff and guide

wavelengths equal those of the air-filled section which

includes the grooves. Fig. 6 shows, on the right-hand

side, the substituted section filled with the uniform and

isotropic dielectric.

For finding the relative permittivity of the dielectric,

we have to equate the cutoff wavelengths of both guide

sections between A and A’ as indicated in Fig. 6. ‘We

find

A.2 = [2(P + AO)]2 = e,(20)2, (38)

which yields

e, = (1 + A4/fl)’,

and

,. = 1 + 2AP/$, (39)

if A@ is a fraction of the width @(A@<<@). Knowing the

permittivity of the dielectric slab, we use relations de-

rived for the cutoff and guide wavelengths of the H-

guide for the determination of these quantities of the

groove guide. The relations involved are [1, 2]

kaz + kd = (% – l)(2T/xo)’, (40)

tan (k~Ak/2) = e&’kd, (41)

k.2 = (27r/AJ2 – (’27r/Xo)2 -I- (T/P)2, (42)

where ka, and kd are constants, A. is the same free-space

wavelength corresponding to the frequency of the

transmitted signals, and A, is the wavelength within the

guide. The cutoff wavelength A. is given by

(l/xc)’ = (l/AO)’ – (l/x.)’. (43)

Evaluation of (4o) to (43), usually performed graph-

ically, yields A, and Ag which is the same for both guides.

It should be noted that the constant k~ represents the

constant for the exponential decrease of the field

intensities in direction parallel to the walk and in direc-
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tion from the centrally-located dielectric slab. The

value of ka is approximately the same in the case of the

groove guide.

CONCLUSION

It is shown that a deformed-wall guide with grooves

in the central region of the cross section is equivalent to

a parallel-wall guide with a dielectric contained in the

central section. The guide has, consequently, similar

properties to those of an H-guide. Theoretically, it is

characterized by low attenuation which decreases with

increasing frequency and by an exponentially decreasing

field distribution in the direction from the center of the

cross section parallel to the walls. Since the guide con-

tains no dielectric, it is expected to have a lower attenua-

tion than the H-guide. Besides the application for long-

distance transmission and as a delay line, the simple

structure makes the guide suitable for the design of

millimeter wave circuitry and of circuit elements.
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Factors Affecting Earth~Satellite Millimeter

Wavelength Communications*

A. W. STRAITON~, FELLOW, IEEE, AND C.

tSumrnarg-The use of millimeter wavelengths for earth-satellite

transmissions is suggested by the large bandwidths and high gain
with small antennas possible at these wavelengths. The factors dis-
cussed are 1) propagation path loss, 2) refraction, and 3) antenna

temperature.
The attenuation through the entire atmosphere over the milli-

meter spectrum is given as a function of elevation angle of the an-

tenna beam. The attenuation and scattering loss due to water and ice
particles varies over a wide range of values depending on the number
of particles and their sizes.

Refraction by the atmosphere is less than one milliradian for
elevation angles for which the absorption is low enough to make the

transmission practical. Fluctuations due to refraction may, however,

be quite severe.

Contribution to antenna temperatures from the atmosphere, the

earth, the sun and moon are given for earth-based antennas and
antennas in space.

INTRODUCTION

E

ARTH-SATELLITIZ millimeter wavelength ap-

plications, as the name implies, involve trans-

mission through the earth’s atmosphere. It is the

purpose of this paper to discuss several of the important

factors which determine the propagation characteristics

of wavelengths from 1 mm to 1 cm and to present the

results of recent measurements which provide further

quantitative evaluations of these factors,

* Received January 21, 1963; revised manuscript received June
3, 1963. The data presented in this paper was obtained under Air
Force Contracts No. 19(604)-8036 and iVo. AF 33(657)-7333.

t Electrical Engineering Research Laboratory, The University
of Texas$ Austin, T’ex,

w. TOLBERT~, SENIOR MEMBER,

This paper will be concerned with

IEEE

1) propagation

path loss, 2) refraction, and 3) antenna temperature.

These factors are pertinent to both active and passive

systems, and form the framework for the choice or rejec-

tion of a millimeter wavelength for a particular applica-

tion.

PROPAGATION PATH LOSSES

The losses experienced in propagating

wavelengths through the earth’s atmosphere,

free-space losses, are caused predominantly

millimeter

other than

by atmos-

pheri~ gases, clouds, particles and precipitation. Longer

wavelengths are attenuated by the same mechanisms but

to a lesser degree because of the remoteness of the wave-

lengths from the resonant frequency of the gas and the

smaller size of precipitation and cloud particles relative

to the longer wavelengths.

The attenuation by atmospheric gases is primarily

associated with oxygen and water vapor molecules and

is most conveniently described by the Van Vleck-

lVeisskopf equation .1 Due to the magnetic moments

associated with oxygen and the electric moments asso-

ciated with water vapor, there are a large number of en-

ergy transitions that produce peak values of absorption

at millimeter wavelengths. lVIost of the energy transi-

‘ J. H. Van Week and V. F. Jtreisskopf, “On the shape of collision
~~dened lines, ” Rev. Mod. Phys., vol. 17, pp. 227-236; April–July,


